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Biological Background

Aging is a process that all organisms undergo, which leads to the slow deterioration of many important
biological functions. The process of aging is very complex, with many different factors and systems that
are involved in the process. A common type of aging in humans is the slow deterioration of mental
function and acuity. Parkinson’s is a brain disease that leads to mental deterioration with symptoms
including: tremors, bradykinesia, rigid muscles, speech changes, and loss of automatic movements[1].
Leucine-Rich Repeat Serine/Threonine-Protein Kinase 2 (LRRK2) is a huge protein with 2 domains, a
kinase domain and a ROC-GTPase domain. The enzymatic phosphorylation ability along with the
enzymatic GTP-GDP hydrolysis ability suggests that it plays a role in interacting with many other
proteins/molecules[2]. One molecule it has shown to interact with is dopamine receptors in the brain.
Many Genome-Wide association studies have been shown to link Lrrk2 mutations to the dopaminergic
neurodegeneration seen in Parkinson’s disease[3[.

RNA-Seq is a method in genomics/transcriptomics that allows scientists the ability to get absolute
concentration measurements of transcript abundance, rather than relative concentrations from methods
like microarrays. The method involves capturing the transcriptome of a sample and filtering out
non-mRNA RNA molecules. The mRNA molecules can be made into a library that represents part of the
transcriptome of the sample at the time of RNA extraction. These libraries can be sequenced using next
generation sequencing (NGS) technologies. At a basic level, NGS is a method that fragments samples
into many small pieces. These pieces are sequenced on special flow cells that can capture which
nucleotides are being added during sequence extension. This results in a large collection of small
sequences that represent the sequence of the sample provided.[4] So in an RNA-seq experiment, the
library that represents the sample’s transcriptome is sequenced into a collection of small fragments.
These small fragment sequences represent the transcripts, and thus the proteins being expressed, at the
time of sample collection. These can be mapped onto a reference genome related to the sample’s
genome, and the fragments will map to genes annotated in the reference genome (mapping just means
that the sequences from the fragments align with sequences from the reference genome). So by
sampling an organism, a scientist can get a quantitative measure of which genes are being expressed at
any given time(see fig.1).[5]



Figure 1: RNA-Seq Experimental Workflow

https://en.m.wikipedia.org/wiki/File:RNA-Seq_workflow-5.pdf

Are there certain genes related to the aging process that can be identified using RNA-Seq gene
expression analysis? If an organism is expressing a Lrrk2 knockout mutation that causes dopaminergic
neurodegeneration, like what is seen in Parkinson’s, then that organism can be thought of as aging faster
in a sense. By collecting samples from organisms either expressing or not expressing Lrrk2 over the
course of their lifetimes, a scientist could capture at least part of the picture of aging. If the samples are
RNA transcripts, then RNA-seq could give an idea of what genes are being expressed differently over the
course of the organisms lifetimes.[3,6]

Statistical Background

The statistical analysis of RNA-seq expression data is a multi-faceted approach, involving a variety of
statistical techniques. First, the amount of data being collected is massive and is highly dimensional.
When working with this type of data it is often appropriate to use some type of dimension-reducing
approach to make the computational analysis functionally time efficient. Principal Component
Analysis(PCA) is a dimension-reducing technique that seeks to maximize variance between data points
and align them along different orthogonal vectors. These different orthogonal vectors are the principal
components(PCs) and capture a subset of the data within them. By choosing a certain amount of PCs
that capture enough information without losing too much of the important data, scientists can reduce
large data sets into just very important PCs. PCA is often used when working with RNA-Seq data, and
the package planned to be used in this project involves a PCA step. Clustering analysis can also be part
of the RNA-seq workflow, which can allow scientists to cluster genes by expression values. An example
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of a clustering analysis method often used to help visualize gene expression values is called heat
mapping. In this type of plot, genes are clustered by their normalized count values and then
hierarchically arranged so that genes with similar expression values are clustered together.[7]

Another important statistical tool used in RNA-Seq analysis is normalization. RNA-seq data comes in the
form of read counts for each gene. These read counts need to be normalized in order to account for not
only transcript size but also sample variation and library composition. One statistical software package
often used in RNA-seq analysis, called DESEQ2, normalizes the read counts by a scaling factor for each
data point. A scaling factor is found by log transforming the read counts and finding their new log
transformed averages. These averages will
be more resistant to outliers compared to
more typical library normalization methods
such as RPKM (Reads Per Kilobase of
transcript, per Million mapped reads),
which can help with large variations due to
biology. Once these log transformed
averages are found, subtracting them from
the log transformed values of each of the
read counts can be done. What this does
mathematically is calculating the ratio of
reads from one sample to the average
reads across all samples (

).𝑙𝑜𝑔(𝑎[𝑐]) −  𝑙𝑜𝑔(𝑎[𝑡]) =  𝑙𝑜𝑔( 𝑎[𝑐]
𝑎[𝑡] )

Calculations of the median values of these
ratios in each sample are then performed.
Taking the median is another step in
accounting for the variability because it
gives the same weight to very large
changes as it does to very low changes.
The algorithm can then take these median
values and transform them back to the
original data (by raising them to the power
of whatever log transformations were done
originally). This value can then be used as
a scaling factor to normalize the data, i.e.
each sample's read counts are divided by
the scaling factor (see fig.2[8]).

A final statistical consideration that is important to review when interpreting RNA-seq gene expression
data is the hypothesis testing done. Hypothesis testing is the way statistical conclusions are found, as it
involves estimating the probability that the sampled data are different from some assumed norm. Said
another way, it gives values to the chances that some alternative hypothesis(HA) is statistically different
from some “null” hypothesis(H0). For gene expression data, this is often done in order to decide if some
gene i is expressed differently between experimental conditions, with the null hypothesis being that gene



i has the same values across the experimental conditions. The final RNA-Seq data will come out as log2

transformed datasets, which is done in order to account for the fold differences in gene expression
between genes. To determine if a gene is expressed statistically differently than other genes, a null and
alternative hypothesis testing is done on the log2 transformed data. Under the null hypothesis the ratio of
gene itreatment and gene icontrol is 1, meaning that log2(itreatment/icontrol) would equal zero. If either gene itreatment or
gene icontrol is larger/smaller, then the log2(itreatment/icontrol) would not equal zero. In fact if it was less than zero
than would mean there is down-regulation of gene i and if it is greater than zero there is up-regulation of
gene i. So H0 = 0 and HA ≠ 0 would be the null and alternative hypothesis respectively.

When working with large and highly complex data, the hypothesis testing done needs to consider that
many tests are done simultaneously which can lead to many false positive and false negative results if
not accounted for. Controlling for these are done by considering the significance level and power needed
for the desired statistical outcomes, as statistical methods cannot account for both perfectly (reducing
the likelihood of one type of error leads to the increased possibility of making the other type of error). The
DESEQ2 package controls for false positive errors by using a measure based on the ratio of the number
of false positives to the total number of significant features, called False Discovery Rate(FDR). Since
RNA-seq experiments are looking at the gene expression levels across the whole transcriptome, using
FDR allows for controlling the statistical calculations at a level where more genes can be found even at
the cost of more false positive errors. The rationale behind this being that a few more false positives are
not detrimental to the goals of the experiment, where they might otherwise be if the experiment had high
costs for false positives like in a drug testing trial.

Sampling Design

Although sample design is always an important part of any experiment, when considering RNA-seq
experimental design it requires even more consideration. Sampling pool depth and replicates are
important for any experiment but need special considerations for RNA-seq data. This is because
variation can come not only from experimental techniques and sensitivities but also from biological
variation. Gene expression values can vary widely for some transcripts between similar biological
samples, i.e. the same transcript from different samples can have wide variability due to biological
variation of that gene (while also having variations in expression from gene to gene). So accounting for
this potential source of variation is important to consider when deciding sample size. Even more
confounding, RNA-seq runs are relatively expensive and have finite sequencing depth capacities. So
determining the weights given to sample size versus cost is an important consideration, especially when
considering the sequencing depth needed. To handle variations due to experimental techniques and
instrument sensitivities technical replicates are used, which are replicates from the same sample
(organism). To handle biological variation biological replicates from different samples (organisms) are
used. The trick from RNA-seq experimental design is how much to account for each one based on the
amount of available funds and needed sequencing depth for questions of interest, i.e. isoform specific
reads offen need more sequencing depth to capture.

Methods



The data set used in this analysis is from a series of Illumina RNA-seq runs between wildtype and
treatment samples. Two populations of Mus musculus(breed:C57BL/6J ) were grown under similar
conditions over the course of 30 months. One population were mice expressing wild-type Lrrk2 and the
other population of mice were transgenic mice expressing a knockout version of Lrrk2. They handle
biological variation by pooling RNA extracts from randomly picked mice, then make a series of technical
replicates by creating copies of the pools described above[6]. More specifically, this analysis investigates
the wildtype and mutant Lrrk2 populations at the 30 month mark with just bladder cells being considered
(the bladder SRA runs were the smallest datasets, the others were as large as >1000Mb).

RNA-seq data comes from Illumina sequencing outputs in the form of many small sequences, referred to
as reads. These reads need to be mapped onto a reference genome and the number of reads mapped to
the genome are called counts. The DESEQ2 algorithm is used in the analysis; where read counts from
sample j assigned to gene i can be modeled and then sample j and j’ can be compared between
condition k, in order to estimate differential gene expression. DESEQ2 uses a negative binomial
distribution for its model because a normal Poisson distribution does not sufficiently account for possible
type I errors (false positives). This is because negative binomial distributions have parameters
accounting for both mean and variance, rathan than simply the mean (as in the case with Poisson
distributions). The relationship between mean(μ) and variance(𝛔2) from gene i in sample j, is estimated
using the data and it provides a better fit for the model to the data. Estimates for μ and 𝛔2 were found
using the data as if three assumptions were made: First the μij parameters is estimated by μij = qi,k(j)sj,-1

where sj = size factor and qi,k(j) = condition specific gene value. The size factor accounts for sequencing
depth and library composition and normalizes qi,k(j), which is proportional to the expected number of
reads of gene i from condition k. Second, the variance parameter is estimated by 𝛔2

ij = μij + s2
jvi,k(j), where

vi,k(j) = raw variance and μij = shot noise. Finally, the raw variance parameter is a smooth function of the
condition specific gene value parameter. This last assumption helps account for low technical replicate
numbers due to high cost by grouping genes with similar expression levels into larger pools during the
variance parameter estimation. So overall, the model estimates read counts by estimating variance and
mean parameters under a negative binomial distribution (RCij ~ NB(qi,k(j)sj,-1, μij + s2

jvi,k(j)).

To fit the model to the data the size factor was estimated. This was done by calculating the medians of
the ratios of RCij vs the geometric mean across samples. The estimates for sj and sj’ for some gene i
should be roughly equal if gene i is not differentially expressed (or if j and j’ were replicates). By taking
the medium of the read counts normalized by geometric means not only helps account for sequencing
depth issues but also helps nullify the potential impact of influential outliers (very low or high expression
values). Estimates of qik were calculated using the average read counts from samples j1,2,...,m for each
condition k scaled by estimated size factor. Finally the estimates of sample variance (wik) were calculated
and scaled using the estimated size factor. Once qik and wik parameters were estimated, a local
regression of (qik, wik) was used to create a smooth function of wk(q) which can be used to estimate the

raw variance (vi,k(j)). This gives us our overall model RCij ~ NB( ik , k[ ik ]).𝑞 𝑣 𝑞

Once the model is calculated significance testing of the different gene expression values between the
samples in the different conditions k needed to be performed. Under the null hypothesis, it was expected
that the differential expression values of a gene i between treatment conditions and control conditions
were roughly equal i.e. qiA = qiB (meaning they were not differentially expressed). To test this DESEQ2



uses a test statistic that uses the sum total read counts for gene i across samples j in condition A (RCiA)
and the sum total read counts for gene i across samples j in condition B (RCiB). The P-value(adjusted) of
(RCiA, RCiB) would be the sum of all probabilities less than or equal to p(RCiA, RCiB). This method helps to
account for a small number of technical replicates in a method that is similar to the Fisher’s exact test,
which tries to help account for small sample sizes.

When gene expression values were calculated and statistically differentiated gene expression values
were found. They were plotted using the Volcano Plots and Heatmap R software packages. Volcano
Plots are “A type of scatter plot represents differential expression of features (genes for example)” and
Heatmaps are “a graphical representation of data where the individual values contained in a matrix are
represented as colors”(see packages section).  Finally, go enrichment analysis was performed using the
R software package Enrichment Analysis Tool which is “A comprehensive system that combines gene
function, ontology, pathways and statistical analysis tools to enable biologists to analyze large-scale
genome-wide experimental data.”(see packages section)

Results

The raw read count data from the RNA-seq Ilumina runs were analyzed using the fastQC package in
Galaxy. Regions with poor quality scores were dropped from further analysis and adapter region
sequences were trimmed using the Trimmomatic package in Galaxy. The resulting reads were aligned
against the Mus musculus reference genome GRCm39 using the HISAT2 package in Galaxy(see table 1).

Table 1: Matrix of SRA runs between wildtype and mutant Lrrk2 Mus musculus populations’
HISAT2 summary stats

Mut Lrrk2
SRR65195

10

Wt Lrrk2
SRR65195

11

Mut Lrrk2
SRR651951

2

Wt Lrrk2
SRR651951

3

Mut Lrrk2
SRR651951

4

Wt Lrrk2
SRR651951

5

Total reads 2756019 1736401 1668286 1626585 1021886 2485542

Aligned 0
time

172118
(6.25%)

108267
(6.24%)

117971
(7.07%)

128165
(7.88%)

26162
(2.56%)

79342
(3.19%)

Aligned 1
time

2330860
(84.57%)

1480663
(85.27%)

1139737
(68.32%)

1354407
(83.27%

767784
(75.13%)

1677104
(67.47%)

Aligned >1
times

253041
(9.18%)

147471
(8.49%)

410578
(24.61%)

144013
(8.85%)

227940
(22.31%)

729096
(29.33%)

Overall
alignment

rate

93.75% 93.76% 92.93% 92.12% 97.44% 96.81%

The aligned reads found using the HISAT2 package represent reads that map to gene model regions
within the reference genome. However, the reads only represent a fraction of the gene mRNA transcript
sequences. This is because the RNA-seq method used to collect the data was from a Tag-Seq library
preparation method, which only targets the 3’ regions of the mRNA transcripts. As a result, the reads
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only cover a small portion of the full mRNA transcript sequence. To produce the full mRNA transcript
sequences associated with the aligned reads, a Galaxy package called Stringtie was used. This package
produced a list of known transcripts predicted by the aligned reads, along with potentially novel
transcripts as well. These transcripts were then reintegrated into the reference genome using the
Stringtie Merge package in Galaxy. The resulting genome (with new gene models) was compared to the
original reference genome (GRCm39) using the GFFCompare tool in Galaxy. This analysis found 134
potential novel exons, 71 novel introns, and 93 novel loci. A GO enrichment analysis of these 134 novel
exons predicted some had high subcellular localizations in mitochondria, an important organelle often
associated with neurodegenerative diseases.

The novel transcripts were removed from the Stringtie merge file in order to perform the DESEQ2
analysis. This was done so that only reference transcripts were present in the file, so the DESEQ2
algorithm doesn’t have to worry about some novel transcript i not being present in all the samples.
DESEQ2 analysis revealed 2889 genes were being differentially expressed between the wildtype Lrrk2
Mus musculus population and the knockout mutant Lrrk2 Mus musculus population, at a significance
level α = 0.05. Differential gene expression was visualized using Heatmap2 and Volcano Plot
packages(see Fig. 5, heatmap omitted for space). [Note: Volcano plot software in Galaxy was not
working, so I plotted the volcano plot using R code, which can be found in package information] Finally,
GO enrichment analysis was performed on the top 25 most differentially expressed genes between the
wildtype and mutant Lrrk2 Mus musculus populations.

Figure 5: Volcano Plot of RNA-Seq Differential Gene Expression Results
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Discussion

The RNA-Seq Illumina runs provided data that was able to be assembled into a list of 30127 mRNA
transcripts that were expressed in the experimental Mus musculus populations. 134 of these transcripts
were flagged as potentially novel forms, and were related to mitochondrial function based on the
subsequent GO enrichment analysis. This is a good indication that the Lrrk2 was driving the phenotypic
expression of aging (well a phenotypic proxy, i.e. neurodegeneration) based on mitochondrial
dysfunction having been associated with many types of neurodegenerative diseases.[9] There was a
significant amount of differential gene expression between the wild type population of Mus musculus
which had the normal version of Lrrk2, and the mutant population of Mus musculus which had a
recombinant knockout out version of Lrrk2. A portion of these differentially expressed genes should be
related to the aging process based on the novel transcript GO enrichment analysis.

DESEQ2 differential gene expression analysis was successfully able to determine 2889 transcripts in the
30127 provided mRNA transcripts that were differentially expressed between the two populations of Mus
musculus, given a significance level of α = 0.05. This was done through a process of normalization,
model selection, and multiple hypothesis testing described in the background and methods sections.
GO term enrichment analysis of the transcripts showed that the most differential gene expression values,
either upregulated or downregulated, had associations with a plethora of aging related functions. Some
of these functions included pathways relating to reactive oxidative stress responses, genomic instability,
and immune response suppression. These results show the power of the statistical techniques we learn
about in this class.

Just from RNA-Seq count data, which is nothing but a list of short sequences, large complex biological
pathways were able to be identified that responded differentially between the two populations. These
responses showed a strong association with many different biological pathways that have been seen to
change during the aging process. Of course, since error was accounted for using a False Discovery Rate
(FDR) method, there were some genes that could have surreptitiously been associated with the aging
process. However, this was done as a global view to demonstrate the power of dimension reduction,
model generation/selection, multiple hypothesis testing, and other statistical techniques we learned in
this class. Elucidation of the data for a given problem can be driven by understanding how each of the
different statistical factors affects outcomes. The data generated from the analysis can also be further
analyzed using other techniques, if more understanding of the respective functions are required.



Packages and Code Used

● HISAT2 : “A fast and sensitive alignment program for mapping next-generation
sequencing reads (both DNA and RNA) to a population of human genomes as well as to
a single reference genome.” - http://daehwankimlab.github.io/hisat2/

● fastQC : “Aims to provide a simple way to do some quality control checks on raw
sequence data coming from high throughput sequencing pipelines. It provides a modular
set of analyses which you can use to give a quick impression of whether your data has
any problems of which you should be aware before doing any further analysis.” -
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

● Trimmomatic : “Performs a variety of useful trimming tasks for illumina paired-end and
single ended data.” - http://www.usadellab.org/cms/?page=trimmomatic

● Stringtie : “A fast and highly efficient assembler of RNA-Seq alignments into potential
transcripts.” - https://ccb.jhu.edu/software/stringtie/

● DESeq2 : “Estimate variance-mean dependence in count data from high-throughput
sequencing assays and test for differential expression based on a model using the
negative binomial distribution.” -
https://bioconductor.org/packages/release/bioc/html/DESeq2.html

● Volcano Plots : “A type of scatter plot represents differential expression of features
(genes for example)” -
https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html

● Enrichment Analysis Tool : “A comprehensive system that combines gene function,
ontology, pathways and statistical analysis tools to enable biologists to analyze
large-scale genome-wide experimental data.” - http://www.pantherdb.org/

● Heatmap : “a graphical representation of data where the individual values contained in a
matrix are represented as colors” - https://www.r-graph-gallery.com/heatmap

(Volcano Plot Code)

library(dplyr)
library(ggplot2)
library(ggrepel)

data = `DifferentiallyExpressedGenes(a=0.05).StatProj_TM...Sheet1`
head(data)

data$expression = ifelse(data$V7 < 0.05 & abs(data$V3) >= 1,
ifelse(data$V3> 1 ,'Upregulated','Downregulated'),
'Stable')

plot = ggplot(data = data,
aes(x = V3,

y = -log10(data$V7),
colour=expression,

http://daehwankimlab.github.io/hisat2/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
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https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html
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https://www.r-graph-gallery.com/heatmap


label = data$V1)) +
geom_point(alpha=0.4, size=3.5) +
geom_text(aes(label=ifelse(data$V7<5.003100e-48,as.character(data$V1),'')),hjust=0,vjust=0) +
scale_color_manual(values=c("blue", "grey","red"))+
xlim(c(-10, 10)) +
geom_vline(xintercept=c(-1,1),lty=4,col="black",lwd=0.8) +
geom_hline(yintercept = 1.301,lty=4,col="black",lwd=0.8) +
labs(x="Differential Expression

log2(fold change)",
y="Statistical Significance

-log10 (p-value)",
title="Differential Gene Expression in Mus musculus in Response to Lrrk2 knockout")  +

theme_bw()+
theme(plot.title = element_text(hjust = 0.5),

legend.position="right",
legend.title = element_blank())

Plot
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